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This paper studies the regularized learning algorithm associated with the least-square loss and reproducing
kernel Hilbert space. The target is the error analysis for the regression problem in learning theory. The
upper and lower bounds of error are simultaneously estimated, which yield the optimal learning rate. The
upper bound depends on the covering number and the approximation property of the reproducing kernel
Hilbert space. The lower bound lies on the entropy number of the set that includes the regression function.
Also, the rate is independent of the choice of the index q of the regular term.

Keywords: learning theory; regularized scheme; reproducing kernel Hilbert space; rate of convergence;
lower bound

2000 AMS Subject Classifications: 68T05; 62J02; 41A17

1. Introduction

This paper discusses the least-square regularized algorithm for the regression problem. The
primary goal is to provide the optimal estimate of the generalization error of the least-square
regularized algorithm. The obtained learning rate is not affected by the choice of the index q of
the regular term.

In the past decade, learning theory has become a popular research subject and is attracting more
and more attention from many fields of scientific research. The universality of learning theory
naturally stimulates the current intensive study of the subject. In the study, one of the basic and
significant characteristics is the regression problem. In 2001, Cucker and Smale [5] listed some
useful mathematical methods in learning theory. They indicated that the least-square regularized
algorithm was the most popular one in learning theory. Recently, the convergence has become an
active research topic for the regression problem. In 2006, Wu et al. [19] considered the regularized
learning algorithm associated with the least-square loss. A novel regularization approach of the
error analysis for the regression problem was introduced. In 2007, Caponnetto and DeVito [3]
developed a method of theoretical analysis of generalization performances of regularized least
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1472 Y. Zhang et al.

squares on RKHS for supervised learning. Some other investigations on this topic can also be
found in Zhou and Jetter [23], Tong et al. [15], Li and Wang [8], Dong and Zhou [6].

The more investigations mentioned above are related to the least square algorithm:

fz,2 ∈ arg min
f ∈H

{
1

n

n∑
i=1

(yi − f (xi))
2 + λ‖f ‖2

H

}
.

We also notice that Steinwart et al. [13] studied the algorithm for some constant q ≥ 1:

fz,q ∈ arg min
f ∈H

{
1

n

n∑
i=1

(yi − f (xi))
2 + λ‖f ‖q

H

}
.

They used the eigenvalues of the associated integral operator as a complexity measure, and
obtained an asymptotical optimal learning rate which was independent of the choice of index
q. However, for the general integral operator, the computation of its eigenvalues is extremely
difficult. On the other hand, we know that the covering number is often used as a complexity
measure in learning theory (see [4,7,9,21,22]). Therefore, we first use, in this paper, the covering
number of the reproducing kernel Hilbert space as a measurement tool and estimate the upper
bound of the learning rate. Then, we introduce the entropy of set to estimate the lower bound
of the learning rate. Especially, the obtained upper and lower bounds have the same degree of
approximation, which yield the optimal learning rate in the asymptotical sense.

The paper is organized as follows. In Section 2, we simply review the regularized learning
problem. In Section 3, we introduce the regularization error and its decomposition. Section 4
estimates the sample error. The obtained bound in connection with the regularization error leads
to the estimation of the generalization error. In Section 5, we give the corresponding lower bound
of the learning rate. Finally, we conclude the paper with the obtained results.

2. Review of the regularized learning problem

Let (X, d) be a compact metric space and let Y = R. Let ρ be a probability distribution on Z =
X × Y and (X , Y) be the corresponding random variable. Denote by z = {zi}mi=1 = {(xi, yi)}mi=1 ∈
Zm a set of random samples, which are independently drawn according to ρ. Let ρX and ρ(y|x)

be the margin probability measure and condition probability measure of ρ, respectively. The
generalization error for a function f : X → Y is defined as

E(f ) =
∫

Z

(f (x) − y)2 dρ. (1)

The function fρ that minimizes the error (1) is called the regression function. It is given by

fρ(x) =
∫

Y

y dρ(y|x), x ∈ X. (2)

In this paper, we assume that for some M ≥ 0, ρ(·|x) is almost everywhere supported on
[−M, M], that is, |y| ≤ M almost surely (with respect to ρ). It follows from the definition (2) of
fρ that |fρ(x)| ≤ M for every x ∈ X.

Basically, learning processes do not take place in a vacuum and some structure needs to be
confirmed at the beginning of the process. Usually, this structure (which is called hypothesis
space) is taken the forms of functions (e.g. polynomial space, continuous function space, etc.).
The goal of the learning process is to find the best approximation of the regression fρ within the
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International Journal of Computer Mathematics 1473

hypothesis space. A well-known hypothesis space is RKHS. It has been mentioned and used in
some published works, such as [11,12,18,19,23].

If HK is one of RKHS, it is associated with the kernel K defined [1] to be the closure of the
linear span of the set of functions {Kx = K(x, ·) : x ∈ X} with the inner product 〈·, ·〉K satisfying
〈Kx, Ky〉K = K(x, y) and

〈Kx, f 〉K = f (x), ∀x ∈ X, f ∈ HK. (3)

The equality (3) is called as the reproducing property of the kernel K .
Let K : X × X → R be continuous, symmetric and positive semidefinite, i.e. for any finite set

of distinct points {x1, x2, . . . , xl} ⊂ X, the matrix (K(xi, xj ))
l
i,j=1 is positive semidefinite. Such

a kernel is called a Mercer kernel.
Let C(X) be the space of continuous functions on X with the norm ‖ · ‖∞. According to

Equation (3), we can obtain

‖f ‖∞ ≤ κ‖f ‖K, ∀f ∈ HK.

Here κ = supx∈X

√
K(x, x).

In the paper, we consider the following least-square algorithm in HK :

fz = fz,q ∈ arg min
f ∈HK

{
1

m

m∑
i=1

(f (xi) − yi)
2 + λ‖f ‖q

K

}
, (4)

where q ≥ 1 is some constant. According to Scholkopf et al. [10], we know that there exists a
unique fz,q in HK satisfying Equation (4) and having the following form:

fz,q =
m∑

i=1

aiKxi
,

where a1, a2, . . . , an ∈ R are the suitable coefficients.
If the empirical error is defined by

Ez(f ) = 1

m

m∑
i=1

(f (xi) − yi)
2,

then the corresponding problem can be represented as

fz = fz,q = arg min
f ∈HK

{
Ez(f ) + λ‖f ‖q

K

}
.

Here λ ≥ 0 is a constant called the regularization parameter. Usually, it depends on the sample
number m. In another word, λ = λ(m). Moreover, it must satisfy limm→0 λ(m) = 0.

By our assumption, fρ(x) ∈ [−M, M]. Thus, it is natural for us to restrict approximating
functions onto those supported on [−M, M].

Definition 1 (see [19]) The projection operator πM is defined on the space of measurable
functions f : X → R as

πM(f )(x) =

⎧⎪⎨
⎪⎩

M if f (x) > M,

f (x) if − M ≤ f (x) ≤ M,

−M if f (x) ≤ −M.
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1474 Y. Zhang et al.

In this paper, we take πM(fz,q) as our empirical target function. The efficiency of the algorithm
(4) is measured by the mean square error between πM(fz,q) and the regression function fρ .
According to the definition of the regression function fρ , we can obtain∫

X

(πM(fz,q)(x) − fρ(x))2 dρX = E(πM(fz,q)) − E(fρ).

3. Regularization error and approximation

Here, we would expect that the minimizer of the regularized empirical error, πM(fz,q), is a good
approximation of the minimizer fρ of the generalization error E(f ), as m → ∞, and λ = λ(m) →
0. This is actually true if fρ can be approximated by functions from HK , measured by the decay
of the regularization error defined as

Dq(λ) = inf
f ∈HK

{‖f − fρ‖2
ρ + λ‖f ‖q

K}.

Thus, the generalization error E(πM(fz,q)) − E(fρ) may be divided into

E(πM(fz,q)) − E(fρ) ≤ {
E(πM(fz,q)) − Ez(πM(fz,q)) + Ez(fK,q) − E(fK,q)

} + Dq(λ), (5)

where the function fK,q depends on λ and is defined as

fK,q = arg min
f ∈HK

{
E(f ) + λ‖f ‖q

K

}
.

In fact,

E(πM(fz,q)) − E(fρ) ≤ E(πM(fz,q)) − E(fρ) + λ‖fz,q‖q

K

= E(πM(fz,q)) − Ez(πM(fz,q)) + Ez(πM(fz,q)) + λ‖fz,q‖q

K − Ez(fK,q)

− λ‖fK,q‖q

K + Ez(fK,q) − E(fK,q) + Dq(λ)

≤ {E(πM(fz,q)) − Ez(πM(fz,q)) + Ez(fK,q) − E(fK,q)} + Dq(λ).

Here, we used the definition of fz,q and the operator πM in the last inequality.
The first term of Equation (5) is called the sample error, and the second one, which measures

the approximation ability of HK for ρ, is called the regularized error. It has been well understood
in [11,12]. The rate of the regularization error is not only important for estimate Dq(λ), but also
crucial for bounding the sample error.

Definition 2 (see [18]) We say that the probability measure ρ can be approximated by HK with
exponent 0 < β ≤ 1 for q = 2 if there exists a constant cβ such that

D2(λ) ≤ cβλβ, ∀λ > 0.

From Definition 2, we see the following Lemma 1 in [13]. Here we give the proof in another
way.

Lemma 1 For any 1 ≤ q, we have

Dq(λ) ≤ 2c
q/(2β+q(1−β))

β λ2β/(2β+q(1−β)).
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International Journal of Computer Mathematics 1475

Proof From the definition of D2(λ
∗), we have

‖fK,2‖K ≤
√

D2(λ∗)
λ∗ ≤ c

1/2
β (λ∗)(β−1)/2,

E(fK,2) − E(fρ) ≤ cβ(λ∗)β .

Then

Dq(λ) = inf
f ∈HK

{E(f ) − E(fρ) + λ‖f ‖q

K}

≤ E(fK,2) − E(fρ) + λ‖fK,2‖q

K

≤ cβ(λ∗)β + λc
q/2
β (λ∗)q(β−1)/2.

When cβ(λ∗)β = λc
q/2
β (λ∗)q(β−1)/2, we can obtain

λ∗ = c
(q−2)/(2β+q(1−β))

β λ2/(2β+q(1−β)).

Therefore,

Dq(λ) ≤ 2c
q/(2β+q(1−β))

β λ2β/(2β+q(1−β)).

The proof of Lemma 1 is completed.
�

4. Bounding the generalization error

In this section, we will give the sample error in Equation (5). The obtained error together
with the regularization error in Section 3 will lead to the estimation of the generalization error
E(πM(fz,q)) − E(fρ).

In fact, according to the first part of Equation (5), we obtain

E(πM(fz,q)) − Ez(πM(fz,q)) + Ez(fK,q) − E(fK,q)

= {Ez(fK,q) − Ez(fρ)} − {E(fK,q) − E(fρ)}
+ {E(πM(fz,q)) − E(fρ)} − {Ez(πM(fz,q)) − Ez(fρ)}. (6)

In order to estimate the sample error, we need to introduce some probability inequalities.
Let ξ be a random variable on a probability space Z with mean E(ξ) = μ ,variance σ 2(ξ) = σ 2,

and satisfying |ξ(z) − E(ξ)| ≤ Mξ for almost all z ∈ Z. Then for all ε > 0 (see [16])

Probz∈Zm

{∣∣∣∣∣ 1

m

m∑
i=1

ξ(zi) − μ

∣∣∣∣∣ ≥ ε

}
≤ exp

{
− mε2

2
(
σ 2 + (1/3)Mξε

)
}

. (7)

We first estimate the first part of Equation (6).

Proposition 1 For 0 < δ ≤ 1, with confidence at least 1 − δ/2, there holds

{E(fK,q) − E(fρ)} − {Ez(fK,q) − Ez(fρ)} ≤ 4κ2(Dq(λ)/λ)2/q + 36M2

m
log

2

δ
+ Dq(λ).
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1476 Y. Zhang et al.

Proof From the definition of Dq(λ), we get

λ‖fK,q‖q

K ≤ Dq(λ).

It follows that

‖fK,q‖∞ ≤ κ‖fK,q‖K ≤ κ

(
Dq(λ)

λ

)1/q

.

For ξ = (fK,q(x) − fρ(x))(fK,q(x) + fρ(x) − 2y) and |fρ(x)| ≤ M , we have

|ξ | ≤ (‖fK,q‖∞ + M)(‖fK,q‖∞ + 3M) ≤ c =
(

κ

(
Dq(λ)

λ

)1/q

+ 3M

)2

.

Hence

|ξ − E(ξ)| ≤ 2

(
κ

(
Dq(λ)

λ

)1/q

+ 3M

)2

= 2c.

Moreover,

E(ξ 2) ≤ ‖fK,q − fρ‖2
ρ(‖fK,q‖∞ + 3M)2,

which implies that

σ 2 ≤ E(ξ 2) ≤ cDq(λ).

Now we apply the inequality (7) to ξ = (fK,q(x) − fρ(x))(fK,q(x) + fρ(x) − 2y). It asserts
that for any ε > 0,

E(ξ) − 1

m

m∑
i=1

ξ(zi) ≤ ε

with confidence at least

1 − exp

{
− mε2

2c(Dq(λ) + (2/3)ε)

}
.

Setting

exp

{
− mε2

2c(Dq(λ) + 2/3ε)

}
= δ

2
,

we solve the above equation, and obtain its positive solution

ε∗ = (2c/3) log(2/δ) + √
((2c/3) log(2/δ))2 + 2cm log(2/δ)Dq(λ)

m
≤ 2c log(2/δ)

m
+ Dq(λ).

Combining with c = (κ(Dq(λ)/λ)1/q + 3M)2, with confidence at least 1 − δ/2, there holds

{E(fK,q) − E(fρ)} − {Ez(fK,q) − Ez(fρ)} ≤ 4κ2(Dq(λ)/λ)2/q + 36M2

3m
log

2

δ
+ Dq(λ).

The proof of Proposition 1 is completed. �

In the following, we estimate the second part of Equations (6). Because the random variable
ξ = (πM(fz,q)(x) − y)2 − (fρ(x) − y)2 involves with the sample z, the estimation is difficult.
We thus solve it by using the covering number.
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Definition 3 For a subset F of a metric space and ε > 0, the covering number N (F, ε) is
defined to be the minimal integer l ∈ N such that there exist l disks with radius ε covering F .

Let BR = {f ∈ HK : ‖f ‖K ≤ R}. Then BR is a subset of C(X), and we denote the covering
number of the unit ball B1 as

N (ε) = N (B1, ε), ε > 0.

Definition 4 (see [18]) The RKHS HK is said to have logarithmic complexity exponent s ≥ 1
if there exists a constant cs > 0 such that

log N (ε) ≤ cs

(
log

(
1

ε

))s

. (8)

The covering number has been extensively studied, see, e.g. [2,9,17,21,22]. We denote by N (η)

the covering number of the unit ball of HK in X. In particular, we know that for the Gaussian
kernel K(x, y) = {−|x − y|2/σ 2} with σ > 0 on a bounded subset X of Rn, Equation (8) holds
with s = n + 1, see [21].

To bound the term {E(πM(fz,q)) − E(fρ)} − {Ez(πM(fz,q)) − Ez(fρ)} in Equation (6) con-
cerning the random variable ξ = (πM(fz,q)(x) − y)2 − (fρ(x) − y)2, we need the probability
inequality (see [19,23]).

Lemma 2 (see [16]) Let ξ be a random variable on Z with mean μ and variance σ 2. Assume that
μ ≤ 0, |ξ − μ| ≤ B almost everywhere, and E(ξ 2) ≤ cξEξ , then for every ε > 0, and 0 < α ≤ 1,
there holds

Probz∈Zm

{
μ − (1/m)

∑m
i=1 ξ(zi)√

μ + ε
≥ α

√
ε

}
≤ exp

{
− α2mε

2cξ + (2/3)B

}
.

For a function g on Z, denote E(g) = ∫
Z

g(z) dρ.

Lemma 3 (see [16]) Let G be a set functions on Z such that for some cρ ≥ 0, |g − Eg| ≤ B

almost everywhere. If E(g2) ≤ cρE(g) for each g ∈ G, then for every ε > 0, and 0 < α ≤ 1,

Probz∈Zm

{
sup
g∈G

E(g) − (1/m)
∑m

i=1 g(zi)√
E(g) + ε

≥ 4α
√

ε

}
≤ N (G, αε) exp

{
− α2mε

2cρ + (2/3)B

}
.

Theorem 1 For all ε > 0 and R > 0, we have

Probz∈Zm

{
sup
f ∈BR

E(πM(f )) − E(fρ) − (Ez(πM(f )) − Ez(fρ))√
E(πM(f )) − E(fρ) + ε

≤ √
ε

}

≥ 1 − exp

{
log N

( ε

16κMR

)
− 3mε

2048M2

}
.

Proof Consider the function set FR defined by

FR = {
(πM(f )(x) − y)2 − (fρ(x) − y)2 : f ∈ BR

}
,
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1478 Y. Zhang et al.

where BR = {f ∈ HK : ‖f ‖K ≤ R}. Each function g ∈ FR has the form g(z) = (πM(f )(x) −
y)2 − (fρ(x) − y)2 with f ∈ BR, and satisfies E(g) = E(πM(f )) − E(fρ) ≥ 0, where

g(z) = (πM(f )(x) − y)2 − (fρ(x) − y)2 = (πM(f )(x) − fρ(x))(πM(f )(x) + fρ(x) − 2y).

Since |πM(f )(x)| ≤ M and |fρ(x)| ≤ M almost everywhere, we obtain

|g(z)| ≤ 2M × 4M = 8M2.

Therefore, we have |g(z) − E(g)| ≤ 16M2 almost everywhere, and

E(g2) ≤ 16M2E(g).

We take cρ = 16M2. Applying Lemma 3 with α = 1/4 to the function set FR , for every ε > 0,
with confidence at least

1 − N
(
FR,

ε

4

)
exp

{
− 3mε

2048M2

}
,

there holds

sup
f ∈BR

E(πM(f )) − E(fρ) − (Ez(πM(f )) − Ez(fρ))√
E(πM(f )) − E(fρ) + ε

≤ √
ε.

According to the definition of function g(z), we know

|g1(z) − g2(z)| ≤ |πM(f1)(x) − πM(f2)(x)||2y − πM(f1)(x) − πM(f2)(x)|
≤ |πM(f1)(x) − πM(f2)(x)||2y − πM(f1)(x) − πM(f2)(x)|
≤ 4M|f1(x) − f2(x)|.

Therefore,

‖g1 − g2‖∞ ≤ 4M‖f1 − f2‖∞ ≤ 4Mκ‖f1 − f2‖K,

which implies that

log N
(
G,

ε

4

)
≤ log N

(
BR,

ε

16κM

)
= log N

( ε

16κMR

)
.

The proof of Theorem 1 is completed. �

From Theorem 1, we know that there holds with confidence at least 1 − log N (ε/16κMR)

exp{−3mε/2048M2}
E(πM(fz,q)) − E(fρ) − (Ez(πM(fz,q)) − Ez(fρ)) ≤ ε1/2

√
E(πM(fz,q)) − E(fρ) + ε.

Recalling the elementary inequality

ab ≤ 1

2
(a2 + b2), ∀a, b ∈ R,

we find

E(πM(fz,q)) − E(fρ) − (Ez(πM(fz,q)) − Ez(fρ)) ≤ 1

2
ε + 1

2

(
E(πM(fz,q)) − E(fρ) + ε

)
.

With confidence 1 − log N (ε/16κMR) exp{−3mε/2048M2}, there holds

E(πM(fz,q)) − E(fρ) − (Ez(πM(fz,q)) − Ez(fρ)) ≤ ε + 1

2

(
E(πM(fz,q)) − E(fρ)

)
.
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We need to consider the positive solution εR of the following equation

h(ε) = log N
( ε

16κMR

)
− 3mε

2048M2
.

Since h : R+ → R is a strictly increasing function, εR ≤ ε∗ if h(ε∗) ≤ log(δ/2) .
For ε ≥ 2048M2 log 2/3m, we get

h(ε) ≤ log N
(

2048M2 log 2

48κMRm

)
− 3mε

2048M2
.

Thus, if we take ε∗ to be a positive number satisfying ε∗ ≥ 2048M2 log 2/3m and the following
inequality

log N
(

2048M2 log 2

48κMRm

)
− 3mε

2048M2
≤ log

δ

2
,

then h(ε∗) ≤ log(δ/2).
Since the inequality satisfied by ε∗ can be written as

ε − 2048M2 log N (2048M2 log 2/48κMRm)

3m
− 2048M2 log(2/δ)

3m
≥ 0.

We can choose

ε∗ = 2048M2 log N (2048M2 log 2/48κMRm)

3m
+ 2048M2 log(2/δ)

3m
≥ 2048M2 log 2

3m
.

And take

εR ≤ 2048M2 log N (2048M2 log 2/48κMRm)

3m
+ 2048M2 log(2/δ)

3m
.

Let us find a ball BR which contains fz,q for all z ∈ Zm.

Lemma 4 For all λ > 0 and all almost z ∈ Zm, there holds

‖fz,q‖K ≤
(

M2

λ

)1/q

.

Proof From the definition of fz,q , we know that

λ‖fz,q‖q

K ≤ Ez(fz,q) + λ‖fz,q‖q

K ≤ Ez(0) + 0 ≤ M2.

Therefore,

‖fz,q‖K ≤
(

M2

λ

)1/q

.

The proof of Lemma 4 is completed. �

Combining with Proposition 1, we can obtain the following Corollary 1.
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Corollary 1 For all 0 < δ ≤ 1, let R = (M2/λ)1/q . With confidence at least 1 − δ, there holds

E(πM(fz,q)) − E(fρ) ≤ 8κ2(Dq(λ)/λ)2/q + 72M2

3m
log

2

δ
+ 4Dq(λ)

+ 4096M2 log N (2048M2 log 2λ1/q/48κM(1+2/q)m)

3m

+ 4096M2 log(2/δ)

3m
.

From Corollary 1, we obtain the following Theorem 2.

Theorem 2 For the function fz,q defined by Equation (4), we have

E
∫

X

(πM(fz,q)(x) − fρ(x))2 dρX

≤ 8192M2 log N (2048M2 log 2λ1/q/48κM(1+2/q)m)

3m
+ 8κ2(Dq(λ)/λ)2/q + 72M2

3m
log 2

+ 4Dq(λ) + 4096M2

3m
log 2.

Proof Let

A = 4096M2 log N (2048M2 log 2λ1/q/48κM(1+2/q)m)

3m
+ 4Dq(λ),

and

B = 8κ2(Dq(λ)/λ)2/q + 72M2

3m
+ 4096M2 log N (2048M2 log 2λ1/q/48κM(1+2/q)m)

3m

+ 4096M2

3m
,

Corollary 1 tells us

E(πM(fz,q)) − E(fρ) ≤ A + B log
2

δ
.

Setting ε = A + B log(2/δ), we get δ = 2 exp{(ε − A)/B}. For t ≥ (24M2/m) log 2, we obtain

E
∫

X

(πM(fz,q)(x) − fρ(x))2 dρX =
∫ ∞

0
Prob{E(πM(fz,q)) − E(fρ) ≥ ε} dε

≤ t +
∫ ∞

t

2 exp

{
ε − A

B

}
dε = t + 2B exp

{
A − t

B

}
,

where the first inequality is obtained from [20]. The above expression is minimized for

t = A + B log 2 = 8192M2 log N (2048M2 log 2λ1/q/48κM(1+2/q)m)

3m

+ 8κ2(Dq(λ)/λ)2/q +72M2

3m
log 2 + 4Dq(λ)+ 4096M2

3m
log 2≥ 24M2

m
log 2.
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Therefore, we have

E
∫

X

(πM(fz,q)(x) − fρ(x))2 dρX

≤ 8192M2 log N (2048M2 log 2λ1/q/48κM(1+2/q)m)

3m
+ 8κ2(Dq(λ)/λ)2/q + 72M2

3m

+ 4Dq(λ) + 4096M2

3m
.

The proof of Theorem 2 is finished. �

Corollary 2 Let the function fz,q be given by Equation (4). When the covering number N (η)

satisfies Equation (8) and the kernel function K satisfy Definition 2, then we can define a sequence
of regularization parameters

λm = m−(2β+q(1−β))/2.

such that there holds

E
∫

X

(πM(fz,q)(x) − fρ(x))2 dρX ≤ c1

mβ
+ c2

m
+ c3

(log m)s

m
,

where c1 = (32κ2/3)c
2/(2β+q(1−β))

β + 8c
q/(2β+q(1−β))

β , c2 = 4168M2/3 + 2s(4 + log κ+ (1 + 2/q)

log M)s , c3 = ((2β + q(3 − β))/q)s .

An interesting observation from Corollary 2 is that the obtained learning rates do not depend
on the choice of q. In the next section, we will illustrate that the above upper bound is optimal.

5. The lower bound of the learning rate

In the following, we show that the learning rate obtained in Corollary 2 is optimal. We now briefly
introduce the entropy number of set.

Definition 5 (see [14]) Let E be a Banach space, and F ⊂ E be a bounded set. For i ≥ 1, the
ith entropy number ei(F, E) of F is defined to be the infimum over all ε > 0 such that there exist
x1, x2, . . . , x2i−1 ∈ F with

F ⊂ ∪2i−1

j=1(xj + εBE),

where BE denotes the closed unit ball of E.

The following theorem gives the lower bounds of learning rates based on [13,14].

Theorem 3 Let ν be the distribution of X, � is a compact subset of L2(ν) such that � ⊂
(1/4)U(C(X)). Assuming that there exists a β ∈ (0, 1) , c1, c2 > 0 such that

c1i
−β ≤ ei(�, L2(ν)) ≤ c2i

−β.

Then for all algorithms A defined by Equation (4) there exists a distribution P on X × [−M, M]
satisfying PX = ν and fρ ∈ � such that

E
∫

X

(πM(fz,q)(x) − fρ(x))2 dρX ≥ C1

(
1

m

)β

,

where C1 is a constant.
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We note that we do not impose direct restrictions on the measure ν in Theorem 3. For example,
in [14], ν may be any Borel measure defined on X. However, we impose indirect assumption by
the entropy number of the set �. It is clear that the parameter r controls the size of the compact
subset �. The bigger r the smaller the compact subset �. Therefore, the parameter r affects the
rate of decay of learning rates.

The proof of Theorem 3 is based on the following Lemma 4.

Lemma 5 (see [13]) Let ν be a distribution on X, and � ⊂ L2(ν) such that ‖f ‖∞ ≤ M/4 for
all f ∈ � and some M > 0. In addition, assume that there exists an r ∈ (0, 1) such that

ei(�, L2(ν)) ∼ i−1/r .

Then there exist constants δ0, c1, c2 > 0 and a sequence {εm} with

εm ∼ m−2/(2+r)

such that for all learning methods A defined by Equation (4) there exists a distribution P on
X × Y satisfying PX = ν and fρ ∈ � such that for all ε > 0 and m ≥ 1

P m(z : E(πM(fz,q)) − E(fρ) ≥ ε) ≥
{

δ0, if ε < εm,

c1e
−c2εm if ε ≥ εm,

where fz is the decision function produced by A for a given training set D.

Our next goal is to apply Lemma 4 in the proof of Theorem 3.

Proof of Theorem 3 Since the set � satisfies

c1i
−β ≤ ei(�, L2(ν)) ≤ c2i

−β,

we apply Lemma 4 with r = (2 − β)/β, and know that there exists a sequence {εm} with

εm ∼ m−β

such that for fρ ∈ �

P m(z : E(πM(fz)) − E(fρ) ≥ ε) ≥
{

δ0, if ε < εm,

c1e
−c2εm if ε ≥ εm.

Using the above inequality, we get

E
∫

X

(πM(fz,q)(x) − fρ(x))2 dρX =
∫ ∞

0
P m(z : E(πM(fz,q)) − E(fρ) ≥ ε) dε

≥
∫ εm

0
εdε + c1

∫ ∞

εm

e−c2εm dε = δ0εm + c1

mc2
e−c2mεm ≥ c1

(
1

m

)β

.

From Corollary 2 and Theorem 3, we know that for fρ ∈ � and the covering number satisfying
Equation (8) there holds with enough large m > 0

C1

(
1

m

)β

≤
∫

X

(πM(fz,q)(x) − fρ(x))2 dρX ≤ C2

(
1

m

)β

. �
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6. Conclusions

In this paper, the explicit upper and lower bounds of the learning rate have been derived by using
general regularized least-square schemes in RKHS. In particular, a good estimation of upper bound
of the convergence rate was achieved by the covering number and the approximation property
of RKHS. The lower bound was given by the entropy number of the set which contained the
regression function. To our knowledge, these bounds have improved previous known bounds on
this topic. The results obtained showed that for the covering number and approximation property
of RKHS satisfying some assumptions, the estimations for rates of convergence are optimal.
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[17] R.C. Williamson, A.J. Smola, and B. Schǒkopf, Generalization performance of regularization networks and support

vector machines via entropy numbers of compact operators, IEEE Trans. Inform. Theory 47 (2001), pp. 2516–2532.
[18] Q. Wu, Y.M. Ying, and D.X. Zhou, Learning theory: From regression to classification, in Topics in Multivariate

Approximation and Interpolation,Volume 12, K. Jetter, M.D. Buhmann, W. Haussmann, R. Schaback and J. Stockler,
eds., Elsevier, Amsterdam, 2006, pp. 257–290.

[19] Q. Wu, Y.M. Ying, and D.X. Zhou, Learning rates of least-square regularized regression, Found. Comput. Math. 6
(2006), pp. 171–192.

[20] S.J. Yan, J.X. Wang, and X.F. Liu, Foundation of Probability Theory, Science Press, Beijing, 1982 (in Chinese).
[21] D.X. Zhou, The covering number in learning theory, J. Complexity 18 (2002), pp. 739–767.
[22] D.X. Zhou, Capacity of reproducing kernel spaces in learning theory, IEEE Trans. Inform. Theory 49 (2003),

pp. 1734–1752.
[23] D.X. Zhou and K. Jetter, Approximation with polynomial kernels and SVM classifiers,Adv. Comput. Math. 25 (2006),

pp. 323–344.

D
ow

nl
oa

de
d 

by
 [

X
i'a

n 
Ji

ao
to

ng
 U

ni
ve

rs
ity

] 
at

 1
8:

34
 1

5 
N

ov
em

be
r 

20
11

 


